Name: E	ate:
UNIT 2 • LINEAR FUNCTIONS	FIF.6*
Lesson 2.4: Calculate and Interpret the Average Rate of Change	
Practice 2.4: Calculate and Interpret the Average Rate of Chang	e A

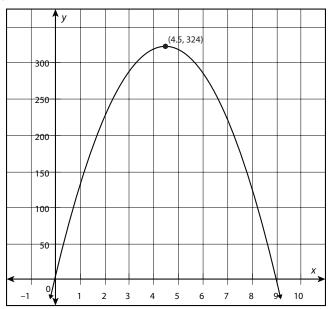
Use the interval $2 \le x \le 5$ to find the average rate of change in problems 1–3.

- 1. f(x) = 2x 3
- 2. $f(x) = x^2 + 4x 1$
- 3. $f(x) = 2(3^x)$
- 4. Find the average rate of change in the following table on the interval of $0 \le x \le 3$.

x		0	1	2	3	4
f(x)	r)	3	6	12	24	48

5. Use the function $f(x)=3^x$ to determine which of the following intervals has the greatest average rate of change: $0 \le x \le 1$, $1 \le x \le 2$, or $2 \le x \le 3$. Predict what will happen when the interval is $9 \le x \le 10$.

The following table lists the high temperatures (T) in Charlotte, N.C., for the first 10 days (D) of February 2017. Use the table to complete problems 6 and 7.


1	0	1	2	3	4	5	6	7	8	9	10
1	Г	73	67	54	45	62	68	73	66	61	53

- 6. Find the average rate of change in temperature for all 10 days.
- 7. Which interval has the fastest decrease in temperature? Which interval had the fastest increase in temperature?

continued

Use the following information and graph to complete problems 8–10.

A ball tossed in the air from ground level is modeled by the function $h(t)=144t-16t^2$, where *h* is the height in feet of the ball in the air and *t* is the time in seconds.

- 8. On what time interval will the ball's height in the air decrease?
- 9. Find the average rate of change from the launch to the ball's maximum height in the air.
- 10. Compare the average rate of change on the intervals $0 \le x \le 4.5$ and $4.5 \le x \le 9$. Do you expect the rate of change to be the same for both intervals? Explain your reasoning.

F-IF.6*