Instruction

Guided Practice 4.11

Example 1

Which function increases faster, f(x) = 4x - 5 or $g(x) = 4^x - 5$? Justify your answer with a graph.

1. Make a general observation.

f(x) = 4x - 5 is a linear function of the form f(x) = mx + b.

The variable *x* is multiplied by the coefficient 4.

 $g(x) = 4^{x} - 5$ is an exponential function of the form $g(x) = ab^{x} + k$.

The variable *x* is the exponent.

2. Create a table of values.

Substitute values for *x* into each function.

f(x) = 4x - 5		$g(x)=4^x-5$	
x	f(x)	x	g(x)
-2	-13	-2	-4.9375
-1	-9	-1	-4.75
0	-5	0	-4
1	-1	1	-1
2	3	2	11

Instruction

F-LE.3*

The graph of f(x) = 4x - 5 appears to be steeper than the graph of $g(x) = 4^x - 5$ until the point (1, -1). At this point, the graphs intersect and f(x) = g(x). Once x is greater than 1, the graph of $g(x) = 4^x - 5$ becomes steeper. From there, $g(x) = 4^x - 5$ increases faster than f(x) = 4x - 5.

Instruction

Example 2

At approximately what point does the value of f(x) exceed the value of g(x) if $f(x) = 2(4)^{\frac{1}{20}}$ and g(x) = 0.5x? Justify your answer with a graph.

- 1. Make a general observation.
 - $f(x) = 2(4)^{\frac{x}{20}}$ is an exponential function of the form $g(x) = ab^{x}$.

The variable *x* is part of the exponent.

g(x) = 0.5x is a linear function of the form f(x) = mx + b.

The variable *x* is multiplied by the coefficient 0.5.

2. Create a table of values.

Substitute values for *x* into each function.

$f(x)=2(4)^{\frac{x}{20}}$		g(x) = 0.5x	
x	f(x)	x	g(x)
0	2	0	0
2	2.30	2	1
4	2.64	4	2
6	3.03	6	3

Instruction

F-LE.3*

4. Identify the approximate point where f(x) is greater than g(x).

It can be seen from the graph that both functions are equal where x is approximately equal to 28. When x is greater than 28, f(x) is greater than g(x).

Instruction

Example 3

Lena has been offered a job with two salary options. The first option is modeled by the function f(x) = 500x + 31,000, where f(x) is her salary in dollars after *x* years. The second option is represented by the function $g(x) = 29,000(1.04)^x$, where g(x) is her salary in dollars after *x* years. If Lena is hoping to keep this position for at least 5 years, which salary option should she choose? Support your answer with a graph.

1. Make a general observation.

f(x) = 500x + 31,000 is a linear function of the form f(x) = mx + b.

The variable *x* is multiplied by the coefficient 500 and added to the constant 31,000.

 $g(x) = 29,000(1.04)^x$ is an exponential function of the form $g(x) = ab^x$.

The variable *x* is the exponent.

Use the two equations to create a table of values.

Substitute the same values for *x* into each function.

f(x) = 500x + 31,000		$g(x) = 29,000(1.04)^x$	
f(x)	x	g(x)	
31,000	0	29,000	
32,000	2	31,366.40	
33,000	4	33,925.90	
34,000	6	36,694.25	
-	<i>f(x)</i> 31,000 32,000 33,000	f(x) x 31,000 0 32,000 2 33,000 4	

F-LE.3*

3. Identify the approximate point where g(x) is greater than f(x).

It can be seen from the graph that after 3 years, g(x) is greater than f(x). If Lena is hoping to keep this position for at least 5 years, it is in her best interest to choose the salary option modeled by $g(x) = 29,000(1.04)^x$.