Guided Practice 4.7

Example 1

Compare the properties of each of the following two functions over the interval [0, 16].

1. Compare the *y*-intercepts of each function. Identify the *y*-intercept of the graphed function, f(x). The graphed function appears to cross the *y*-axis at the point (0, 850). According to the table, g(x) has a *y*-intercept of (0, 850). Both functions have a *y*-intercept of (0, 850).

g(x)

850

F-IF.9

2.	Compare the rate of change for each function over the interval [0, 16].		
	Calculate the rate of change over the interval $[0, 16]$ for $f(x)$.		
	Let $(x_1, y_1) = (0, 850)$.		
	Determine (x_2, y_2) from the graph.		
	The value of y when x is 16 is approximately 1,600.		
	Let $(x_2, y_2) = (16, 1600)$.		
	Calculate the rate of change using the slope formula.		
	$m = \frac{y_2 - y_1}{x_2 - x_1}$	Slope formula	
	$=\frac{(1600)-(850)}{(16)-(0)}$	Substitute (0, 850) for (x_1, y_1) and (16, 1600) for (x_2, y_2) .	
	$=\frac{750}{16}$	Simplify.	
	= 46.875		
	The rate of change for $f(x)$ is approximately 47. Calculate the rate of change over the interval [0, 16] for $g(x)$.		
	Let $(x_1, y_1) = (0, 850)$.		
	Determine (x_2, y_2) from the table.		
	The value of <i>y</i> when <i>x</i> is 16 is 1,480.88.		
	Let $(x_2, y_2) = (16, 1480.88)$.		
			(continued)

F-IF.9

Instruction

Calculate the rate of change using the slope formula. $m = \frac{y_2 - y_1}{x_2 - x_1}$ Slope formula (1480.88) - (850)Substitute (0, 850) for (x_1, y_1) and =-(16) - (0)(16, 1480.88) for (x_2, y_2) . 630.88 Simplify. =-16 = 39.43The rate of change for g(x) is 39.43. The rate of change for the graphed function, f(x), is greater over the interval [0, 16] than the rate of change for the function in the table, g(x).

3. Summarize your findings.

The *y*-intercepts of both functions are the same; however, the graphed function, f(x), has a greater rate of change over the interval [0, 16].

Example 2

A Petri dish started with a population of 8 bacteria. The population doubles every 15 minutes. A second population of bacteria, shown in the following graph, also started with 8 bacteria. Compare the properties of the functions that represent each population over the interval [150, 210].

1. Compare the *y*-intercepts of each function.

According to the scenario, the initial number of bacteria for both functions is 8; therefore, the *y*-intercept is 8.

Instruction

2. Compare the rate of change for each function over the interval [150, 210]. Calculate the rate of change over the interval [150, 210] for the graphed function. Determine (x_1, y_1) from the graph. The value of *y* when *x* is 150 is approximately 275. Let $(x_1, y_1) = (150, 275)$. Determine (x_2, y_2) from the graph. The value of *y* when *x* is 210 is approximately 1,000. Let $(x_2, y_2) = (210, 1000)$. Calculate the rate of change using the slope formula. $m = \frac{y_2 - y_1}{x_2 - x_1}$ Slope formula $=\frac{(1000)-(275)}{(210)-(150)}$ Substitute (150, 275) for (x_1, y_1) and (210, 1000) for (x_2, y_2) . 725 $=\frac{1}{60}$ Simplify. ≈ 12 The rate of change for the graphed function is approximately 12 bacteria per minute. To determine the rate of change for the other function described in the scenario, first write a function rule to represent the situation. $f(x) = 8(2)^{\overline{15}}$

Determine the value for *y* when *x* is 150 using the function.

 $f(x) = 8(2)^{\frac{x}{15}}$ Original function $f(x) = 8(2)^{\frac{(150)}{15}}$ Substitute 150 for x. $f(150) = 8(2)^{10}$ Simplify.

(continued)

f(150) = 8(1024)f(150) = 8192 $(x_1, y_1) = (150, 8192)$ Determine the value for *y* when *x* is 210 using the function. $f(x) = 8(2)^{\frac{x}{15}}$ Original function (210)Substitute 210 for *x*. $f(x) = 8(2)^{-15}$ $f(210) = 8(2)^{14}$ Simplify as needed. f(210) = 8(16,384)*f*(210) = 131,072 $(x_2, y_2) = (210, 131, 072)$ Calculate the rate of change using the slope formula. $m = \frac{y_2 - y_1}{x_2 - x_1}$ Slope formula $=\frac{(131,072)-(8192)}{(210)-(150)}$ Substitute (150, 8192) for (x_1, y_1) and (210, 131, 072) for (x_2, y_2) . $=\frac{122,880}{60}$ Simplify as needed.

= 2048

The rate of change for the function in the table is 2,048 bacteria per minute.

The rate of change for the graphed function is less steep over the interval [150, 210] than the rate of change for the other function.

3. Summarize your findings.

The *y*-intercepts of both functions are the same; however, the graphed function is less steep over the interval [150, 210]. The population of bacteria shown by the graphed function are doubling at a slower rate than the bacteria in the first function described.

Example 3

A pendulum swings to 90% of its previous height. Pendulum A starts at a height of 50 centimeters. Its height at each swing is modeled by the function $f(x) = 50(0.90)^x$. The height after every fifth swing of Pendulum B is recorded in the following table. Compare the properties of each function over the interval [5, 15].

x	<i>g</i> (<i>x</i>)
0	100
5	59.05
10	34.87
15	20.59
20	12.16

1. Compare the *y*-intercepts of each function.

Identify the *y*-intercept of Pendulum A.

The problem states that the pendulum starts at a height of 50 centimeters.

The *y*-intercept of the function is (0, 50).

Identify the *y*-intercept of Pendulum B.

The value of g(x) is 100 when x is 0.

The *y*-intercept of the function is 100.

Instruction

2.	Compare the rate of change for each function over the interval [5, 15].		
	Calculate the rate of change over the interval [5, 15] for Pendulum A.		
	Determine (x_1, y_1) from the function.		
	$f(x) = 50(0.90)^x$	Original function	
	$f(5) = 50(0.90)^{(5)}$	Substitute 5 for <i>x</i> .	
	<i>f</i> (5) = 29.52	Simplify.	
	Let $(x_1, y_1) = (5, 29.52)$. Determine (x_2, y_2) from the function.		
	$f(x) = 50(0.90)^x$	Original function	
	$f(15) = 50(0.90)^{(15)}$	Substitute 15 for <i>x</i> .	
	$f(15) \approx 10.29$	Simplify.	
	The value of <i>y</i> when <i>x</i> is 15 is approximately 10.29. Let $(x_2, y_2) = (15, 10.29)$. Calculate the rate of change using the slope formula.		
	$m = \frac{y_2 - y_1}{x_2 - x_1}$	Slope formula	
	$=\frac{(10.29)-(29.52)}{(15)-(5)}$	Substitute (5, 29.52) for (x_1, y_1) and	
	(15)-(5)	$(15, 10.29)$ for (x_2, y_2) .	
	$=\frac{-19.23}{10}=-1.923$	Simplify.	
	The rate of change for Pendulum A's function is approximately -1.923 centimeters per swing.		

(continued)

Instruction

Let $(x_1, y_1) = (5, 59.05)$.

Let $(x_2, y_2) = (15, 20.59)$.

Calculate the rate of change using the slope formula.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
Slope formula
= $\frac{(20.59) - (59.05)}{(15) - (5)}$ Substitute (5, 59.05) for (x_1, y_1) and
(15, 20.59) for (x_2, y_2) .
= $\frac{-38.46}{10} = -3.846$ Simplify.

The rate of change for Pendulum B's function is approximately –3.846 centimeters per swing.

The rate of change for Pendulum B is greater over the interval [5, 15] than the rate of change for Pendulum A.

3. Summarize your findings.

The *y*-intercept of Pendulum A is less than the *y*-intercept of Pendulum B. This means that Pendulum B begins higher than Pendulum A. The rate of change for Pendulum A is less than the rate of change for Pendulum B. This means that Pendulum B is losing height faster than Pendulum A.