Guided Practice 4.7

Example 1

Compare the properties of each of the following two functions over the interval $[0,16]$.

Function A

Function B

\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})$
0	850
4	976.55
8	1121.94
12	1288.98
16	1480.88

1. Compare the y-intercepts of each function.

Identify the y-intercept of the graphed function, $f(x)$.
The graphed function appears to cross the y-axis at the point $(0,850)$.
According to the table, $g(x)$ has a y-intercept of $(0,850)$.
Both functions have a y-intercept of $(0,850)$.
2. Compare the rate of change for each function over the interval $[0,16]$.

Calculate the rate of change over the interval $[0,16]$ for $f(x)$.
Let $\left(x_{1}, y_{1}\right)=(0,850)$.
Determine (x_{2}, y_{2}) from the graph.
The value of y when x is 16 is approximately 1,600 .
Let $\left(x_{2}, y_{2}\right)=(16,1600)$.
Calculate the rate of change using the slope formula.

$$
\begin{array}{ll}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Slope formula } \\
=\frac{(1600)-(850)}{(16)-(0)} & \text { Substitute }(0,850) \text { for }\left(x_{1}, y_{1}\right) \text { and } \\
=\frac{750}{16} & \text { Simplify. } \\
=46.875 &
\end{array}
$$

The rate of change for $f(x)$ is approximately 47.
Calculate the rate of change over the interval $[0,16]$ for $g(x)$.
Let $\left(x_{1}, y_{1}\right)=(0,850)$.
Determine $\left(x_{2}, y_{2}\right)$ from the table.
The value of y when x is 16 is $1,480.88$.
Let $\left(x_{2}, y_{2}\right)=(16,1480.88)$.
(continued)

Calculate the rate of change using the slope formula.

$$
\begin{array}{ll}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Slope formula } \\
=\frac{(1480.88)-(850)}{(16)-(0)} & \text { Substitute }(0,850) \text { for }\left(x_{1}, y_{1}\right) \text { and } \\
(16,1480.88) \text { for }\left(x_{2}, y_{2}\right) . \\
=\frac{630.88}{16} & \text { Simplify. } \\
=39.43 &
\end{array}
$$

The rate of change for $g(x)$ is 39.43.
The rate of change for the graphed function, $f(x)$, is greater over the interval $[0,16]$ than the rate of change for the function in the table, $g(x)$.
3. Summarize your findings.

The y-intercepts of both functions are the same; however, the graphed function, $f(x)$, has a greater rate of change over the interval [0, 16].

Example 2

A Petri dish started with a population of 8 bacteria. The population doubles every 15 minutes. A second population of bacteria, shown in the following graph, also started with 8 bacteria. Compare the properties of the functions that represent each population over the interval [150, 210].

1. Compare the y-intercepts of each function.

According to the scenario, the initial number of bacteria for both functions is 8 ; therefore, the y-intercept is 8 .
2. Compare the rate of change for each function over the interval [150,210$]$. Calculate the rate of change over the interval [150, 210] for the graphed function.

Determine $\left(x_{1}, y_{1}\right)$ from the graph.
The value of y when x is 150 is approximately 275 .
Let $\left(x_{1}, y_{1}\right)=(150,275)$.
Determine $\left(x_{2}, y_{2}\right)$ from the graph.
The value of y when x is 210 is approximately 1,000 .
Let $\left(x_{2}, y_{2}\right)=(210,1000)$.
Calculate the rate of change using the slope formula.

$$
\begin{array}{ll}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Slope formula } \\
=\frac{(1000)-(275)}{(210)-(150)} & \text { Substitute }(150,275) \text { for }\left(x_{1}, y_{1}\right) \text { and } \\
(210,1000) \text { for }\left(x_{2}, y_{2}\right) \\
=\frac{725}{60} & \text { Simplify. } \\
\approx 12 &
\end{array}
$$

The rate of change for the graphed function is approximately 12 bacteria per minute.
To determine the rate of change for the other function described in the scenario, first write a function rule to represent the situation.

$$
f(x)=8(2)^{\frac{x}{15}}
$$

Determine the value for y when x is 150 using the function.

$$
\begin{array}{ll}
f(x)=8(2)^{\frac{x}{15}} & \text { Original function } \\
f(x)=8(2)^{\frac{(150)}{15}} & \text { Substitute } 150 \text { for } x . \\
f(150)=8(2)^{10} & \text { Simplify. }
\end{array}
$$

Instruction

$$
\begin{aligned}
& f(150)=8(1024) \\
& f(150)=8192 \\
& \left(x_{1}, y_{1}\right)=(150,8192)
\end{aligned}
$$

Determine the value for y when x is 210 using the function.

$$
\begin{aligned}
& f(x)=8(2)^{\frac{x}{15}} \quad \text { Original function } \\
& f(x)=8(2)^{\frac{(210)}{15}} \quad \text { Substitute } 210 \text { for } x . \\
& f(210)=8(2)^{14} \quad \text { Simplify as needed. } \\
& f(210)=8(16,384) \\
& f(210)=131,072 \\
& \left(x_{2}, y_{2}\right)=(210,131,072)
\end{aligned}
$$

Calculate the rate of change using the slope formula.

$$
\begin{array}{ll}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Slope formula } \\
=\frac{(131,072)-(8192)}{(210)-(150)} & \text { Substitute }(150,8192) \text { for }\left(x_{1}, y_{1}\right) \text { and } \\
=\frac{122,880}{60} & \text { Simplify as needed. } \\
=2048 &
\end{array}
$$

The rate of change for the function in the table is 2,048 bacteria per minute.

The rate of change for the graphed function is less steep over the interval $[150,210]$ than the rate of change for the other function.
3. Summarize your findings.

The y-intercepts of both functions are the same; however, the graphed function is less steep over the interval [150, 210]. The population of bacteria shown by the graphed function are doubling at a slower rate than the bacteria in the first function described.

Example 3

A pendulum swings to 90% of its previous height. Pendulum A starts at a height of 50 centimeters. Its height at each swing is modeled by the function $f(x)=50(0.90)^{x}$. The height after every fifth swing of Pendulum B is recorded in the following table. Compare the properties of each function over the interval $[5,15]$.

\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})$
0	100
5	59.05
10	34.87
15	20.59
20	12.16

1. Compare the y-intercepts of each function.

Identify the y-intercept of Pendulum A.
The problem states that the pendulum starts at a height of 50 centimeters.

The y-intercept of the function is $(0,50)$.
Identify the y-intercept of Pendulum B.
The value of $g(x)$ is 100 when x is 0 .
The y-intercept of the function is 100 .
2. Compare the rate of change for each function over the interval $[5,15]$. Calculate the rate of change over the interval $[5,15]$ for Pendulum A.

Determine (x_{1}, y_{1}) from the function.

$$
\begin{array}{ll}
f(x)=50(0.90)^{x} & \text { Original function } \\
f(5)=50(0.90)^{(5)} & \text { Substitute } 5 \text { for } x . \\
f(5)=29.52 & \text { Simplify } .
\end{array}
$$

Let $\left(x_{1}, y_{1}\right)=(5,29.52)$.
Determine (x_{2}, y_{2}) from the function.

$$
\begin{array}{ll}
f(x)=50(0.90)^{x} & \text { Original function } \\
f(15)=50(0.90)^{(15)} & \text { Substitute } 15 \text { for } x . \\
f(15) \approx 10.29 & \text { Simplify }
\end{array}
$$

The value of y when x is 15 is approximately 10.29 .
Let $\left(x_{2}, y_{2}\right)=(15,10.29)$.
Calculate the rate of change using the slope formula.

$$
\begin{array}{ll}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Slope formula } \\
=\frac{(10.29)-(29.52)}{(15)-(5)} & \begin{array}{l}
\text { Substitute }(5,29.52) \text { for }\left(x_{1}, y_{1}\right) \text { and } \\
(15,10.29) \text { for }\left(x_{2}, y_{2}\right) .
\end{array} \\
=\frac{-19.23}{10}=-1.923 & \text { Simplify. }
\end{array}
$$

The rate of change for Pendulum A's function is approximately -1.923 centimeters per swing.

Instruction

Calculate the rate of change over the interval $[5,15]$ for Pendulum B.
Let $\left(x_{1}, y_{1}\right)=(5,59.05)$.
Let $\left(x_{2}, y_{2}\right)=(15,20.59)$.
Calculate the rate of change using the slope formula.

$$
\begin{array}{ll}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Slope formula } \\
=\frac{(20.59)-(59.05)}{(15)-(5)} & \text { Substitute }(5,59.05) \text { for }\left(x_{1}, y_{1}\right) \text { and } \\
(15,20.59) \text { for }\left(x_{2}, y_{2}\right) . \\
=\frac{-38.46}{10}=-3.846 & \text { Simplify. }
\end{array}
$$

The rate of change for Pendulum B's function is approximately -3.846 centimeters per swing.

The rate of change for Pendulum B is greater over the interval $[5,15]$ than the rate of change for Pendulum A.
3. Summarize your findings.

The y-intercept of Pendulum A is less than the y-intercept of Pendulum B. This means that Pendulum B begins higher than Pendulum A. The rate of change for Pendulum A is less than the rate of change for Pendulum B. This means that Pendulum B is losing height faster than Pendulum A.

