Practice 4.7: Comparing Exponential Functions

Compare the properties of the exponential functions.

1. Which function has a greater rate of change over the interval $[2,8]$? Which function has the greater y-intercept? Explain how you know.

Function A

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
0	1400
2	1546.92
4	1709.25
6	1888.62
8	2086.82

Function B

2. Which function has a greater rate of change over the interval [0,5$]$? Which function has the greater y-intercept?

Function A

$$
f(x)=\left(\frac{1}{2}\right)^{x}
$$

Function B

$g(x)=2^{x}$
3. Compare the properties of each function over the interval [2, 8].

Function A

$f(x)=400\left(1+\frac{0.06}{12}\right)^{12 x}$

Function B

\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})$
0	350.00
2	398.45
4	453.61
6	516.40
8	587.88

4. Compare the properties of each function over the interval $[0,5]$.

Function A

Function B
$f(x)=3(2)^{x}$

5. Compare the properties of each exponential function over the interval [0, 10].

Function A

A fully inflated beach ball is losing 7.5% of its air every day. The beach ball originally contained 800 cubic inches of air.

Function B

6. Compare the properties of each exponential function over the interval $[0,5]$.

Function A

Jasmine received a job offer with a starting salary of \$32,000 and a 1.5% increase every year.

Function B

A second job offer for Jasmine can be described by the function $f(x)=30,000(1+0.02)^{x}$.
7. Compare the properties of each exponential function over the interval [0, 4].

Function A

The enrollment of Eastern High School,
$f(x)$, after x years is modeled by the function $f(x)=1700(1+0.025)^{x}$.

Function B

The following table shows the enrollment of a rival high school, $g(x)$, for 5 years.

\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})$
0	1900
1	1872
2	1843
3	1816
4	1789

8. Compare the properties of each exponential function over the interval [1, 3].

Function A

The following table shows the value in dollars of a rare stamp, $f(x), x$ years from the date purchased.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
0	52
1	54.08
2	56.24
3	58.49
4	60.83

Function B

The following graph models the value in dollars of a second rare stamp, $g(x)$, after x years.

9. Compare the properties of each exponential function over the interval $[0,4]$.

Function A

The value of a car in dollars, $f(x)$, depreciates after each year, x. The following table shows the value of a car for each of the first 4 years after it was purchased.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
0	22,450
1	19,307
2	$16,604.02$
3	$14,279.46$
4	$12,280.33$

Function B

The value of a second car is modeled by the equation $g(x)=19,375(1-0.16)^{x}$, where $g(x)$ represents the value of the car x years after the date it was purchased.
10. Compare the properties of each exponential function over the interval [0, 10].

Function A

An investment of \$1,000 earns interest at a rate of 3.75%, compounded monthly.

Function B

The value of a second investment is modeled in the following graph.

