# Practice 4.7: Comparing Exponential Functions

Compare the properties of the exponential functions.

1. Which function has a greater rate of change over the interval [2, 8]? Which function has the greater *y*-intercept? Explain how you know.





2. Which function has a greater rate of change over the interval [0, 5]? Which function has the greater *y*-intercept?





**Function B**  $g(x) = 2^{x}$ 



U4-139

F-IF.9

# **UNIT 4 • EXPONENTIAL FUNCTIONS** Lesson 4.7: Comparing Exponential Functions

3. Compare the properties of each function over the interval [2, 8].

| Function | B |
|----------|---|
|----------|---|

| x | g(x)   |
|---|--------|
| 0 | 350.00 |
| 2 | 398.45 |
| 4 | 453.61 |
| 6 | 516.40 |
| 8 | 587.88 |
|   |        |

4. Compare the properties of each function over the interval [0, 5].

# **Function** A

 $f(x) = 3(2)^x$ 

# **Function B**





F-IF.9

5. Compare the properties of each exponential function over the interval [0, 10].

## **Function** A

A fully inflated beach ball is losing 7.5% of its air every day. The beach ball originally contained 800 cubic inches of air.



6. Compare the properties of each exponential function over the interval [0, 5].

#### **Function** A

Jasmine received a job offer with a starting salary of \$32,000 and a 1.5% increase every year.

#### **Function B**

A second job offer for Jasmine can be described by the function  $f(x) = 30,000(1 + 0.02)^{x}$ .



# **UNIT 4 • EXPONENTIAL FUNCTIONS** Lesson 4.7: Comparing Exponential Functions

7. Compare the properties of each exponential function over the interval [0, 4].

| <b>Function</b> A | ł |
|-------------------|---|
|-------------------|---|

# **Function B**

Date:

The enrollment of Eastern High School, f(x), after *x* years is modeled by the function  $f(x) = 1700(1 + 0.025)^x$ . The following table shows the enrollment of a rival high school, g(x), for 5 years.

| x | g(x) |
|---|------|
| 0 | 1900 |
| 1 | 1872 |
| 2 | 1843 |
| 3 | 1816 |
| 4 | 1789 |

8. Compare the properties of each exponential function over the interval [1, 3].

#### **Function** A

## **Function B**

The following table shows the value in dollars of a rare stamp, f(x), x years from the date purchased.

| x | f(x)  |
|---|-------|
| 0 | 52    |
| 1 | 54.08 |
| 2 | 56.24 |
| 3 | 58.49 |
| 4 | 60.83 |

The following graph models the value in dollars of a second rare stamp, g(x), after x years.



# **UNIT 4 • EXPONENTIAL FUNCTIONS** Lesson 4.7: Comparing Exponential Functions

#### **Function** A

The value of a car in dollars, f(x), depreciates after each year, *x*. The following table shows the value of a car for each of the first 4 years after it was purchased.

| x | f(x)      |
|---|-----------|
| 0 | 22,450    |
| 1 | 19,307    |
| 2 | 16,604.02 |
| 3 | 14,279.46 |
| 4 | 12,280.33 |

## **Function B**

Date:

The value of a second car is modeled by the equation  $g(x) = 19,375(1 - 0.16)^x$ , where g(x)represents the value of the car *x* years after the date it was purchased.

10. Compare the properties of each exponential function over the interval [0, 10].

### **Function** A

An investment of \$1,000 earns interest at a rate of 3.75%, compounded monthly.

The value of a second investment is modeled in the following graph.

**Function B** 

y



| x | f(x)      |
|---|-----------|
| 0 | 22,450    |
| 1 | 19,307    |
| 2 | 16,604.02 |
| 3 | 14,279.46 |
| 4 | 12,280.33 |