UNIT 4 • EXPONENTIAL FUNCTIONS

Find the percent rate of change of f(t) for each unit of t. State whether the function shows exponential growth or decay.

1. $f(t) = 110(0.95)^t$

Name:

2. $f(t) = 1.08(1.07)^t$

- 3. $f(t) = 30(0.90)^{4t}$
- 4. $f(t) = 63(0.87)^{11t}$
- 5. $f(t) = 500(1.15)^{2t}$

Use the information to complete problems 6–8.

The deer population, *p*, in a forest preserve *t* years after 2005 can be estimated using the function $p(t) = 440(0.92)^{t}$.

6. What was the size of the deer population in 2005?

Α

UNIT 4 • EXPONENTIAL FUNCTIONS Lesson 4.8: Analyzing Exponential Functions

- 7. What is the yearly rate of change of the population?
- 8. The wolf population may be related to the deer population. The wolf population, *w*, can be estimated *t* years after 2005 using the function $w(t) = 84(0.98)^{2t}$. Which population is changing faster? Explain your answer.

Use the information to complete problems 9 and 10.

Neal opens a savings account that earns interest monthly. He can estimate the total dollars in his account, d(t), t years after opening the account by using $d(t) = 4000(1.0008)^{12t}$.

9. How much money did Neal initially put into the account?

10. What is the yearly rate of change of the account? Is it growing or decaying?