Guided Practice 5.1

Example 1

Find the sum of $(4+3 x)+(2+x)$.

1. Rewrite the sum so that like terms are together.

There are two numeric quantities, 4 and 2, and two terms that contain a variable, $3 x$ and x. All the terms are positive.

$$
\begin{aligned}
& (4+3 x)+(2+x) \\
& =4+2+3 x+x
\end{aligned}
$$

2. Find the sum of any numeric quantities.

The numeric quantities in this example are 4 and 2.

$$
\begin{aligned}
& 4+2+3 x+x \\
& =6+3 x+x
\end{aligned}
$$

3. Find the sum of any terms with the same variable raised to the same power.

The two terms $3 x$ and x both contain only the variable x raised to the first power.

$$
\begin{aligned}
& 6+3 x+x \\
& =6+4 x
\end{aligned}
$$

The result of $(4+3 x)+(2+x)$ is $6+4 x$.

Example 2

Find the sum of $\left(7 x^{2}-x+15\right)+(6 x+12)$.

1. Rewrite the sum so that like terms are together.

Be sure to keep any negatives with the expression that follows, such as $-x$.

$$
\begin{aligned}
& \left(7 x^{2}-x+15\right)+(6 x+12) \\
& =7 x^{2}-x+6 x+15+12
\end{aligned}
$$

2. Find the sum of any numeric quantities.

$$
\begin{aligned}
& 7 x^{2}-x+6 x+15+12 \\
& =7 x^{2}-x+6 x+27
\end{aligned}
$$

3. Find the sum of any terms with the same variable raised to the same power.
There is only one term with the variable x raised to the second power.
There are two terms with the variable x raised to the first power, $-x$ and $6 x$, so these can be combined.

Add the coefficients of the variable.

$$
\begin{aligned}
& 7 x^{2}-x+6 x+27 \\
& =7 x^{2}+5 x+27
\end{aligned}
$$

The result of $\left(7 x^{2}-x+15\right)+(6 x+12)$ is $7 x^{2}+5 x+27$.

Lesson 5.1: Adding and Subtracting Polynomials

Instruction

Example 3

Find the difference of $\left(x^{5}+8\right)-\left(3 x^{5}+5 x\right)$.

1. Rewrite the difference as a sum.

A difference can be written as a sum by adding the opposite of the second expression.
Simplify " $-\left(3 x^{5}+5 x\right)$ " by distributing -1 and writing the polynomial as $\left(-3 x^{5}-5 x\right)$.

$$
\begin{aligned}
& \left(x^{5}+8\right)-\left(3 x^{5}+5 x\right) \\
& =\left(x^{5}+8\right)+\left[-1\left(3 x^{5}+5 x\right)\right] \\
& =\left(x^{5}+8\right)+\left(-3 x^{5}-5 x\right)
\end{aligned}
$$

2. Rewrite the sum so that any like terms are together.

Be sure to keep any negatives with the expression that follows, such as $-3 x^{5}$.

$$
\begin{aligned}
& \left(x^{5}+8\right)+\left(-3 x^{5}-5 x\right) \\
& =x^{5}+\left(-3 x^{5}\right)+(-5 x)+8
\end{aligned}
$$

3. Find the sum of any terms with the same variable raised to the same power.

There are two terms with the variable x raised to the fifth power.
There is only one term with x raised to the first power, and only one numeric quantity.
The sum of the two terms with x^{5} can be combined by adding their coefficients.

$$
\begin{aligned}
& x^{5}+\left(-3 x^{5}\right)+(-5 x)+8 \\
& =-2 x^{5}-5 x+8
\end{aligned}
$$

The result of $\left(x^{5}+8\right)-\left(3 x^{5}+5 x\right)$ is $-2 x^{5}-5 x+8$.

Lesson 5.1: Adding and Subtracting Polynomials

Instruction

Example 4

Caleb has fourteen 3-foot fence sections and would like to use them all to create a rectangular garden. If he uses only whole fence sections, how should Caleb use the fence sections to create a garden with the most area? Use the formula for the area of a rectangle, $A=l w$.

1. Assign a variable to the number of fence sections needed to create the maximum area.

Let x represent the number of sections for the length of the rectangle. There are a total of 14 sections in all, so the length plus the width must be made up of 7 sections. The width can be represented by $7-x$.
2. Write a function model for the area of the garden.

Substitute the values for the length and width into the formula $A=l w$ to calculate the area.

$A=l w$	Area formula for a rectangle
$A=(x)(7-x)$	Substitute x for l and $7-x$ for w.
$A=7 x-x^{2}$	Distribute.

The area of the garden can be modeled by the function $A=7 x-x^{2}$.
3. Use a graphing calculator to generate a table of data for different values of x.

Follow the steps appropriate to your calculator model.
On a TI-83/84:
Step 1: Press $[\mathrm{Y}=]$. At Y_{1}, use your keypad to enter the function. Use $[\mathrm{X}, \mathrm{T}, \theta, \mathrm{n}]$ for x and $\left[x^{2}\right]$ for any exponents.

Step 2: Press [GRAPH]. Press [WINDOW] to adjust the graph's axes.

Step 3: Press [2ND][GRAPH] to display a table of values.
(continued)

On a TI-Nspire:

Step 1: Press [home]. Arrow down to the graphing icon, the second icon from the left, and press [enter].

Step 2: Enter the function to the right of " $f 1(x)=$ " and press [enter].
Step 3: To adjust the x - and y-axis scales on the window, press [menu] and select 4: Window and then 1: Window Settings. Enter each setting as needed. Tab to "OK" and press [enter].

Step 4: To see a table of values, press [menu] and scroll down to 2: View and 9: Show Table. (For some models, press [menu] and select 7: Table, then 1: Split-screen Table.)
4. Use the table of values to determine the maximum value(s) of x.

The maximum value of the function occurs when $x=3.5$, but since we must use complete fence sections, use the integers on either side of 3.5: $x=3$ and $x=4$.
5. Use the results of step 4 to determine the maximum area of the garden. $A=12$ at both $x=3$ and $x=4$. Multiply 12 by the squared length of the individual 3 -foot fence sections $\left(3^{2}=9\right)$ to find the maximum area. The maximum area at $x=3$ or $x=4$ is 12 fence sections squared, or 108 square feet of garden area $(108=12 \bullet 9)$.
6. Explain how Caleb should use the fence sections to create a garden with the most area. Refer to the domain of x in your explanation.
The domain of x is whole fence sections, so it can be represented by the interval [0, 7]. Parts of a fence section cannot be used, so either $x=3$ or $x=4$ will give the largest area possible given the constraint of the domain. Both values of x give the same dimensions for the garden. That is, either 3 fence sections by 4 fence sections or 4 fence sections by 3 fence sections gives 108 square feet.

$$
108=9 \cdot 12=3^{2} \cdot 12=3^{2} \cdot 4 \cdot 3=3^{2} \cdot 3 \cdot 4
$$

