UNIT 5 • POLYNOMIAL OPERATIONS AND QUADRATIC FUNCTIONS Lesson 5.2: Multiplying Polynomials

A-APR.1

Instruction

Guided Practice 5.2

Example 1

Find the product of (2x - 1)(x + 18).

- 1. Distribute the first polynomial over the second. Ensure that any negative signs are included in the products where appropriate. (2x-1)(x+18) $= 2x \cdot x + 2x \cdot 18 + (-1) \cdot x + (-1) \cdot 18$ 2. Use properties of exponents to simplify any expressions. x is x to the first power, or x^1 . $2x \cdot x$ $= 2x^1 \cdot x^1$ $= 2x^{1+1}$ $= 2x^2$ Rewrite the expression, substituting $2x^2$ for $2x \cdot x$. $2x \cdot x + 2x \cdot 18 + (-1) \cdot x + (-1) \cdot 18$ $= 2x^2 + 2x \cdot 18 + (-1) \cdot x + (-1) \cdot 18$
 - 3. Simplify any remaining products. The coefficient of a term can be multiplied by a number: ax • b = abx. 2x² + 2x • 18 + (-1) • x + (-1) • 18 = 2x² + 36x - x - 18
 4. Combine any like terms. 2x² + 36x - x - 18 = 2x² + 35x - 18
 - The result of (2x 1)(x + 18) is $2x^2 + 35x 18$.

Instruction

Example 2

Find the product of $(x^3 + 9x)(-x^2 + 11)$.

1. Distribute the first polynomial over the second.

Ensure that any negatives are included in the products where appropriate.

 $(x^3 + 9x)(-x^2 + 11)$

 $= x^{3} \bullet (-x^{2}) + x^{3} \bullet 11 + 9x \bullet (-x^{2}) + 9x \bullet 11$

2. Use properties of exponents to simplify like exponential expressions. To multiply terms that have the same base (in this case, *x*), keep this base and add the exponents: $x^m \bullet x^n = x^{(m+n)}$.

$$= x^{3} \bullet (-x^{2}) + x^{3} \bullet 11 + 9x \bullet (-x^{2}) + 9x \bullet 11$$

$$= -x^{3+2} + x^{3} \bullet 11 - 9x^{1+2} + 9x \bullet 11$$

$$= -x^{5} + x^{3} \cdot 11 - 9x^{3} + 9x \cdot 11$$

3. Simplify any remaining products. The coefficient of a term can be multiplied by a number: $ax \bullet b = abx$. $-x^5 + 11 \bullet x^3 - 9x^3 + 9x \bullet 11$

$$= -x^{5} + 11x^{3} - 9x^{3} + 99x$$

4. Combine any like terms. $-x^{5} + 11x^{3} - 9x^{3} + 99x$ $= -x^{5} + 2x^{3} + 99x$ The result of $(x^{3} + 9x)(-x^{2} + 11)$ is $-x^{5} + 2x^{3} + 99x$.

Instruction

Example 3

Find the product of $(3x + 4)(x^2 + 6x + 10)$.

1. Distribute the first polynomial over the second.

Multiply each term in the first polynomial by each term in the second polynomial.

 $(3x+4)(x^2+6x+10)$

$$= 3x \bullet x^{2} + 3x \bullet 6x + 3x \bullet 10 + 4 \bullet x^{2} + 4 \bullet 6x + 4 \bullet 10$$

- 2. Use properties of exponents to simplify any expressions. $3x \cdot x^{2} + 3x \cdot 6x + 3x \cdot 10 + 4 \cdot x^{2} + 4 \cdot 6x + 4 \cdot 10$ $= 3x^{3} + 18x^{2} + 3x \cdot 10 + 4 \cdot x^{2} + 4 \cdot 6x + 4 \cdot 10$
- 3. Simplify any remaining products. $3x^{3} + 18x^{2} + 3x \cdot 10 + 4 \cdot x^{2} + 4 \cdot 6x + 4 \cdot 10$ $= 3x^{3} + 18x^{2} + 30x + 4x^{2} + 24x + 40$
- 4. Combine any like terms.

Only terms with the same variable raised to the same power can be combined.

The sum can first be rewritten with the exponents in descending order.

$$3x^{3} + 18x^{2} + 30x + 4x^{2} + 24x + 40$$

= $3x^{3} + 18x^{2} + 4x^{2} + 30x + 24x + 40$
= $3x^{3} + 22x^{2} + 54x + 40$
The result of $(3x + 4)(x^{2} + 6x + 10)$ is $3x^{3} + 22x^{2} + 54x + 40$.

UNIT 5 • POLYNOMIAL OPERATIONS AND QUADRATIC FUNCTIONS Lesson 5.2: Multiplying Polynomials

Example 4

Find the area of the right triangle.

Instruction

UNIT 5 • POLYNOMIAL OPERATIONS AND QUADRATIC FUNCTIONS Lesson 5.2: Multiplying Polynomials

A-APR.1

Instruction

3. Rewrite the expression using the Distributive Property.	
$A = \frac{1}{2}(2x+6)(4x+3)$	Equation from the previous step
$A = \left(\frac{1}{2} \bullet 2x + \frac{1}{2} \bullet 6\right) (4x + 3)$	Multiply each term in the first binomial by $\frac{1}{2}$.
A = (x+3)(4x+3)	Simplify.
$A = x \bullet 4x + 3 \bullet 4x + 3 \bullet x + 3 \bullet 3$	Multiply each term in the first binomial by each term in the second binomial.
$A = 4x^2 + 12x + 3x + 9$	Simplify.
4. Add like terms.	
$A = 4x^{2} + 12x + 3x + 9$ Equation from the previous step	
$A = 4x^2 + 15x + 9$ Add 12x and 3x.	
The area of right triangle <i>M</i> is $A = 4x^2 + 15x + 9$.	