Guided Practice 5.2

Example 1

Find the product of $(2 x-1)(x+18)$.

1. Distribute the first polynomial over the second.

Ensure that any negative signs are included in the products where appropriate.

$$
\begin{aligned}
& (2 x-1)(x+18) \\
& =2 x \cdot x+2 x \cdot 18+(-1) \cdot x+(-1) \cdot 18
\end{aligned}
$$

2. Use properties of exponents to simplify any expressions.
x is x to the first power, or x^{1}.

$$
\begin{aligned}
& 2 x \bullet x \\
& =2 x^{1} \cdot x^{1} \\
& =2 x^{1+1} \\
& =2 x^{2}
\end{aligned}
$$

Rewrite the expression, substituting $2 x^{2}$ for $2 x \bullet x$.

$$
\begin{aligned}
& 2 x \cdot x+2 x \cdot 18+(-1) \cdot x+(-1) \cdot 18 \\
& =2 x^{2}+2 x \cdot 18+(-1) \cdot x+(-1) \cdot 18
\end{aligned}
$$

3. Simplify any remaining products.

The coefficient of a term can be multiplied by a number: $a x \bullet b=a b x$.

$$
\begin{aligned}
& 2 x^{2}+2 x \cdot 18+(-1) \cdot x+(-1) \cdot 18 \\
& =2 x^{2}+36 x-x-18
\end{aligned}
$$

4. Combine any like terms.

$$
\begin{aligned}
& 2 x^{2}+36 x-x-18 \\
& =2 x^{2}+35 x-18
\end{aligned}
$$

The result of $(2 x-1)(x+18)$ is $2 x^{2}+35 x-18$.

Example 2

Find the product of $\left(x^{3}+9 x\right)\left(-x^{2}+11\right)$.

1. Distribute the first polynomial over the second.

Ensure that any negatives are included in the products where appropriate.

$$
\begin{aligned}
& \left(x^{3}+9 x\right)\left(-x^{2}+11\right) \\
& =x^{3} \cdot\left(-x^{2}\right)+x^{3} \cdot 11+9 x \cdot\left(-x^{2}\right)+9 x \cdot 11
\end{aligned}
$$

2. Use properties of exponents to simplify like exponential expressions.

To multiply terms that have the same base (in this case, x), keep this base and add the exponents: $x^{m} \cdot x^{n}=x^{(m+n)}$.

$$
\begin{aligned}
& =x^{3} \cdot\left(-x^{2}\right)+x^{3} \cdot 11+9 x \cdot\left(-x^{2}\right)+9 x \cdot 11 \\
& =-x^{3+2}+x^{3} \cdot 11-9 x^{1+2}+9 x \cdot 11 \\
& =-x^{5}+x^{3} \cdot 11-9 x^{3}+9 x \cdot 11
\end{aligned}
$$

3. Simplify any remaining products.

The coefficient of a term can be multiplied by a number: $a x \bullet b=a b x$.

$$
\begin{aligned}
& -x^{5}+11 \cdot x^{3}-9 x^{3}+9 x \cdot 11 \\
& =-x^{5}+11 x^{3}-9 x^{3}+99 x
\end{aligned}
$$

4. Combine any like terms.

$$
\begin{aligned}
& -x^{5}+11 x^{3}-9 x^{3}+99 x \\
& =-x^{5}+2 x^{3}+99 x
\end{aligned}
$$

The result of $\left(x^{3}+9 x\right)\left(-x^{2}+11\right)$ is $-x^{5}+2 x^{3}+99 x$.

Example 3

Find the product of $(3 x+4)\left(x^{2}+6 x+10\right)$.

1. Distribute the first polynomial over the second.

Multiply each term in the first polynomial by each term in the second polynomial.

$$
\begin{aligned}
& (3 x+4)\left(x^{2}+6 x+10\right) \\
& =3 x \cdot x^{2}+3 x \cdot 6 x+3 x \cdot 10+4 \cdot x^{2}+4 \cdot 6 x+4 \cdot 10
\end{aligned}
$$

2. Use properties of exponents to simplify any expressions.

$$
\begin{aligned}
& 3 x \cdot x^{2}+3 x \cdot 6 x+3 x \cdot 10+4 \cdot x^{2}+4 \cdot 6 x+4 \cdot 10 \\
& =3 x^{3}+18 x^{2}+3 x \cdot 10+4 \cdot x^{2}+4 \cdot 6 x+4 \cdot 10
\end{aligned}
$$

3. Simplify any remaining products.

$$
\begin{aligned}
& 3 x^{3}+18 x^{2}+3 x \cdot 10+4 \cdot x^{2}+4 \cdot 6 x+4 \cdot 10 \\
& =3 x^{3}+18 x^{2}+30 x+4 x^{2}+24 x+40
\end{aligned}
$$

4. Combine any like terms.

Only terms with the same variable raised to the same power can be combined.

The sum can first be rewritten with the exponents in descending order.

$$
\begin{aligned}
& 3 x^{3}+18 x^{2}+30 x+4 x^{2}+24 x+40 \\
& =3 x^{3}+18 x^{2}+4 x^{2}+30 x+24 x+40 \\
& =3 x^{3}+22 x^{2}+54 x+40
\end{aligned}
$$

The result of $(3 x+4)\left(x^{2}+6 x+10\right)$ is $3 x^{3}+22 x^{2}+54 x+40$.

Example 4

Find the area of the right triangle.

1. Identify important quantities.

The area of a triangle can be found using the formula $A=\frac{1}{2} b h$. In right triangle $M, b=(2 x+6)$ and $h=(4 x+3)$.
2. Substitute the expressions for b, base, and h, height.

$$
\begin{array}{ll}
A=\frac{1}{2} b h & \text { Formula for area of a triangle } \\
A=\frac{1}{2}(2 x+6)(4 x+3) & \text { Substitute }(2 x+6) \text { for } b \text { and }(4 x+3) \text { for } h .
\end{array}
$$

3. Rewrite the expression using the Distributive Property.

$$
\begin{array}{ll}
A=\frac{1}{2}(2 x+6)(4 x+3) & \text { Equation from the previous step } \\
A=\left(\frac{1}{2} \bullet 2 x+\frac{1}{2} \bullet 6\right)(4 x+3) & \begin{array}{l}
\text { Multiply each term in the } \\
\text { first binomial by } \frac{1}{2} .
\end{array} \\
A=(x+3)(4 x+3) & \text { Simplify. } \\
A=x \bullet 4 x+3 \bullet 4 x+3 \bullet x+3 \bullet 3 & \begin{array}{l}
\text { Multiply each term in the first } \\
\text { binomial by each term in the } \\
\text { second binomial. }
\end{array} \\
A=4 x^{2}+12 x+3 x+9 & \begin{array}{l}
\text { Simplify. }
\end{array}
\end{array}
$$

4. Add like terms.

$$
\begin{array}{ll}
A=4 x^{2}+12 x+3 x+9 & \text { Equation from the previous step } \\
A=4 x^{2}+15 x+9 & \text { Add } 12 x \text { and } 3 x .
\end{array}
$$

The area of right triangle M is $A=4 x^{2}+15 x+9$.

