Practice 5.3: Factoring Expressions by the Greatest Common Factor

For problems 1-6, factor each expression by the greatest common factor if a common factor exists, or state that the terms have no common factor.

1. $3 x^{3}+5 x^{2}$
2. $x^{2}-9 x+3$
3. $2 x^{2} y-8 x y^{2}$
4. $x^{3} y^{2}-2 x^{2} y^{3}+5 x y^{2}$
5. $y^{4}+2 y^{2}$
6. $7 x-21 x^{2} y$

Use what you have learned about factoring polynomials by the GCF to complete problems 7 and 8.
7. Christopher has two bags of marbles. The number of marbles in the first bag can be represented by the monomial $45 x^{2} y$, and the number of marbles in the other bag can be represented by $60 x^{3} y^{2}$. What is the GCF of these two monomials?
8. An equilateral triangle has a perimeter of $\left(15 x^{3}+33 y^{2}\right)$ feet. What is the length of each side?

Use the following information to complete problems 9 and 10.
Samuel and Ariana are competing in a speed round for an open position on the math team. To win the spot, each student must factor the same polynomial expression, $12 x y z^{2}+16 x^{2} y^{2} z-32 x^{2} y z$, by finding the GCF.
9. Samuel's final result was $2 x y z(6 z+8 x y-16 x)$. Explain his error, if any.
10. Ariana's final result was $4 x y z^{2}(3 x+4 x y-8 x y z)$. Explain her error, if any.

