UNIT 5 • POLYNOMIAL OPERATIONS AND QUADRATIC FUNCTIONS Lesson 5.3: Factoring Expressions by the Greatest Common Factor

A-SSE.3*

Α

Practice 5.3: Factoring Expressions by the Greatest Common Factor

For problems 1–6, factor each expression by the greatest common factor if a common factor exists, or state that the terms have no common factor.

1.	$3x^3 + 5x^2$	4.	$x^2 - 9x + 3$
2.	$2x^2y - 8xy^2$	5.	$x^{3}y^{2} - 2x^{2}y^{3} + 5xy^{2}$
3.	$y^4 + 2y^2$	6.	$7x - 21x^2y$

Use what you have learned about factoring polynomials by the GCF to complete problems 7 and 8.

- 7. Christopher has two bags of marbles. The number of marbles in the first bag can be represented by the monomial $45x^2y$, and the number of marbles in the other bag can be represented by $60x^3y^2$. What is the GCF of these two monomials?
- 8. An equilateral triangle has a perimeter of $(15x^3 + 33y^2)$ feet. What is the length of each side?

Use the following information to complete problems 9 and 10.

Samuel and Ariana are competing in a speed round for an open position on the math team. To win the spot, each student must factor the same polynomial expression, $12xyz^2 + 16x^2y^2z - 32x^2yz$, by finding the GCF.

- 9. Samuel's final result was 2xyz(6z + 8xy 16x). Explain his error, if any.
- 10. Ariana's final result was $4xyz^2(3x + 4xy 8xyz)$. Explain her error, if any.