UNIT $5 \cdot$ POLYNOMIIAL OPERATIONS AND QUADRATIC FUNCTIONS

Guided Practice 5.6

Example 1

Solve $x^{2}+3 x=0$ for x.

1. Write the equation in standard form, $a x^{2}+b x+c=0$, and determine values for a, b, and c.

In this case, the equation is already in standard form because the polynomial on the left, $x^{2}+3 x$, is set equal to 0 .

For $x^{2}+3 x=0$, there is an understood coefficient of 1 for the x^{2} term, so $a=1$ and $b=3$. There is no constant, so $c=0$.
2. Factor the polynomial and rewrite the equation.

First, determine if $x^{2}+3 x$ has any common factors.
Both terms have a factor of x; therefore,
$x^{2}+3 x=(x \bullet x)+(x \bullet 3)=x(x+3)$.
The polynomial cannot be factored any further.
The factors of $x^{2}+3 x$ are x and $(x+3)$.
The equation $x^{2}+3 x=0$ can be rewritten as $x(x+3)=0$.
3. Set each factor equal to 0 and solve for x.

Once the polynomial has been factored, set each factor equal to 0 and then solve for x.

$$
\begin{array}{ll}
x=0 & x+3=0 \\
& x=-3
\end{array}
$$

The solutions to the equation $x^{2}+3 x=0$ are $x=0$ and $x=-3$.

UNIT $5 \cdot$ POLYNOMIIAL OPERATIONS AND QUADRATIC FUNCTIONS

4. Check the solutions by substituting them into the original equation.

Check that a solution is correct by substituting it back into the original equation and solving the equation to ensure that it results in a true statement.

Check $x=0$:

$$
\begin{array}{ll}
x^{2}+3 x=0 & \text { Original equation } \\
(0)^{2}+3(0)=0 & \text { Substitute } 0 \text { for } x . \\
0+0=0 & \text { Evaluate the power and multiply. } \\
0=0 & \text { Add. }
\end{array}
$$

Because $x=0$ makes the equation true, it is a solution to the equation. Check $x=-3$:

$$
\begin{array}{ll}
x^{2}+3 x=0 & \text { Original equation } \\
(-3)^{2}+3(-3)=0 & \text { Substitute }-3 \text { for } x . \\
9+(-9)=0 & \text { Evaluate the power and multiply. } \\
0=0 & \text { Add. }
\end{array}
$$

Because $x=-3$ makes the equation true, it is also a solution.
The solutions to the equation $x^{2}+3 x=0$ are $x=0$ and $x=-3$.

UNIT $5 \cdot$ POLYNOMIIAL OPERATIONS AND QUADRATIC FUNCTIONS

Example 2

Solve $4 x^{2}-26 x=14$ for x.

1. Write the equation in standard form, $a x^{2}+b x+c=0$, and determine values for a, b, and c.

The right side of the equation must equal 0 . To get 0 on the right side, subtract 14 from both sides: $4 x^{2}-26 x-14=0$.

The equation is now in standard form because the polynomial on the left, $4 x^{2}-26 x-14$, is set equal to 0 .
For $4 x^{2}-26 x-14=0, a=4, b=-26$, and $c=-14$.
2. Factor the polynomial and rewrite the equation.

First, determine if $4 x^{2}-26 x-14$ has any common factors.
All three terms have a factor of 2 ; therefore,
$4 x^{2}-26 x-14=2 \cdot 2 x^{2}-2 \cdot 13 x-2 \cdot 7=2\left(2 x^{2}-13 x-7\right)$.
Next, factor the trinomial $2 x^{2}-13 x-7$.
The product of 2 (the coefficient of the second-degree term) and -7 (the constant) is -14 . Find the factors of -14 that add up to -13 , the coefficient of the first-degree term.
-14 and 1 are factors of -14 that have a sum of -13 .
Rewrite $-13 x$ as $-14 x+1 x$:

$$
2 x^{2}-13 x-7=2 x^{2}-14 x+1 x-7
$$

Factor $2 x^{2}-14 x+1 x-7$ by grouping.

$$
\begin{array}{ll}
2 x^{2}-14 x+1 x-7 & \text { Expression } \\
=\left(2 x^{2}-14 x\right)+(x-7) & \begin{array}{l}
\text { Group } 2 x^{2} \text { and }-14 x \text { because they have } \\
\text { a common factor of } 2 x .
\end{array} \\
=2 x(x-7)+(x-7) & \text { Factor out } 2 x \text { from } 2 x^{2}-14 x . \\
=(2 x+1)(x-7) & \begin{array}{l}
\text { Use the Distributive Property to } \\
\text { rewrite the expression as two factors. }
\end{array}
\end{array}
$$

The factors of $4 x^{2}-26 x-14$ are $2,(2 x+1)$, and $(x-7)$.
The equation $4 x^{2}-26 x-14=0$ can be rewritten as $2(2 x+1)(x-7)=0$.

UNIT $5 \cdot$ POLYNOMIIAL OPERATIONS AND QUADRATIC FUNCTIONS

3. Set each factor equal to 0 and solve for x.

Once the polynomial has been factored, set each factor equal to 0 .
The factor 2 is a constant and can be disregarded because 2 cannot equal 0 . Furthermore, if both sides of the equation were divided by 2 , the 2 would disappear since 0 divided by 2 is 0 .

Only the factors that contain a variable can be set equal to 0 and solved. Set both of these factors equal to 0 and solve:

$$
\begin{array}{ll}
2 x+1=0 & x-7=0 \\
2 x=-1 & x=7 \\
x=-\frac{1}{2} &
\end{array}
$$

The solutions to the equation $4 x^{2}-26 x=14$ are $x=-\frac{1}{2}$ and $x=7$.
4. Check the solutions by substituting them into the original equation.

Check that a solution is correct by substituting it back into the original equation and solving the equation to ensure that it results in a true statement.

Check $x=-\frac{1}{2}$:

$$
\begin{array}{ll}
4 x^{2}-26 x=14 & \text { Original equation } \\
4\left(-\frac{1}{2}\right)^{2}-26\left(-\frac{1}{2}\right)=14 & \text { Substitute }-\frac{1}{2} \text { for } x . \\
4\left(\frac{1}{4}\right)-26\left(-\frac{1}{2}\right)=14 & \text { Evaluate the power. } \\
1+13=14 & \text { Multiply. } \\
14=14 & \text { Add. }
\end{array}
$$

Because $x=-\frac{1}{2}$ makes the equation true, it is a solution to the equation.
(continued)

UNIT $5 \cdot$ POLYNOMIIAL OPERATIONS AND QUADRATIC FUNCTIONS
 A-SSE. ${ }^{\star}$,
 Lesson 5.6: Solving Quadratic Equations by Factoring

Instruction

$4 x^{2}-26 x=14$	Original equation
$4(7)^{2}-26(7)=14$	Substitute 7 for x.
$4(49)-26(7)=14$	Evaluate the power.
$196-182=14$	Multiply.
$14=14$	Subtract.

Because $x=7$ makes the equation true, it is also a solution.
The solutions to the equation $4 x^{2}-26 x=14$ are $x=-\frac{1}{2}$
and $x=7$.

Example 3

The area of the Baker family's rectangular driveway is 324 square feet. The length is 3 feet larger than twice the width. What are the length and width of the driveway?

1. Write expressions that represent the length and width of the driveway.

Let x represent the width of the driveway.
The length is 3 feet larger than twice the width. Thus, the length must equal $2 x+3$.
x represents the width of the driveway and $2 x+3$ represents the length.
2. Write an equation for the area of the driveway.

Use the fact that the area of a rectangle equals the length times the width to write an equation.

$$
\begin{array}{ll}
A=l w & \text { Formula for the area of a rectangle } \\
(324)=(2 x+3)(x) & \begin{array}{l}
\text { Substitute } 324 \text { for the area, }(2 x+3) \\
\text { for the length, and } x \text { for the width }
\end{array}
\end{array}
$$

The equation representing the area of the driveway is $324=(2 x+3)(x)$.

UNIT $5 \cdot$ POLYNOMIIAL OPERATIONS AND QUADRATIC FUNCTIONS

3. Write the equation in standard form, $a x^{2}+b x+c=0$.

Rearrange the equation so that the polynomial is in standard form, set equal to 0 .

$$
\begin{array}{ll}
324=(2 x+3)(x) & \text { Original equation } \\
(2 x+3)(x)=324 & \begin{array}{l}
\text { Apply the Symmetric Property of Equality } \\
\text { to switch the left and right sides. }
\end{array} \\
2 x^{2}+3 x=324 & \text { Distribute the } x . \\
2 x^{2}+3 x-324=0 & \text { Subtract } 324 \text { from both sides }
\end{array}
$$

The equation $2 x^{2}+3 x-324=0$ is now in standard form and is ready to be factored.
4. Factor the polynomial and rewrite the equation.

First, determine if $2 x^{2}+3 x-324$ has any common factors.
There are no factors that are common to all three terms.
Next, factor the trinomial $2 x^{2}+3 x-324$.
The product of 2 (the coefficient of the second-degree term) and -324 (the constant) is -648 . Find the factors of -648 that add up to 3 , the coefficient of the first-degree term.
27 and -24 are factors of -648 that have a sum of 3 .
Rewrite $3 x$ as $27 x-24 x$:

$$
2 x^{2}+3 x-324=2 x^{2}+27 x-24 x-324
$$

Factor $2 x^{2}+27 x-24 x-324$ by grouping. Note that $2 x^{2}$ and $-24 x$ have a common factor of $2 x$, and $27 x$ and -324 have a common factor of 27 .

$$
\begin{array}{ll}
2 x^{2}+27 x-24 x-324 & \text { Expression } \\
=\left(2 x^{2}-24 x\right)+(27 x-324) & \text { Group according to common factors. } \\
=2 x(x-12)+27(x-12) & \text { Factor out } 2 x \text { from } 2 x^{2}-24 x \text { and } 27 \\
\text { from } 27 x-324 . \\
=(2 x+27)(x-12) & \text { Use the Distributive Property to } \\
\text { rewrite the expression as two factors. }
\end{array}
$$

UNIT $5 \cdot$ POLYNOMIIAL OPERATIONS AND QUADRATIC FUNCTIONS

5. Set each factor equal to 0 and solve for x.

Once the polynomial has been factored, set each factor equal to 0 .
The first factor is $(2 x+27)$. Set this equal to $0: 2 x+27=0$
The second factor is $(x-12)$. Set this equal to $0: x-12=0$
Next, solve each equation for x.

$$
\begin{array}{ll}
2 x+27=0 & x-12=0 \\
2 x=-27 & x=1 \\
x=-\frac{27}{2} &
\end{array}
$$

The solutions to the equation are $x=-\frac{27}{2}$ and $x=12$.
6. Determine which solution for x makes sense for the situation.

Since x represents the width of the driveway, x must be positive (the width of the driveway cannot be negative). Thus, $x=-\frac{27}{2}$ does not make sense as a solution, so it can be disregarded. Therefore, $x=12$ is the only solution to the equation given the context of the scenario.
7. Find the length and the width of the driveway.

Since x represents the width of the driveway and $x=12$, the width of the driveway is 12 feet.

Since $2 x+3$ represents the length of the driveway, substitute 12 for x and solve to find the length:

$$
\begin{array}{ll}
2 x+3 & \text { Length of the driveway } \\
=2(12)+3 & \text { Substitute } 12 \text { for } x . \\
=24+3 & \text { Multiply. } \\
=27 & \text { Add. }
\end{array}
$$

The length of the driveway is 27 feet.
The driveway is 27 feet long and 12 feet wide.

