A–SSE.3*, A–CED.1*, A–REI.4

Instruction

Guided Practice 5.6

Example 1

Solve $x^2 + 3x = 0$ for x.

1. Write the equation in standard form, $ax^2 + bx + c = 0$, and determine values for *a*, *b*, and *c*.

In this case, the equation is already in standard form because the polynomial on the left, $x^2 + 3x$, is set equal to 0.

For $x^2 + 3x = 0$, there is an understood coefficient of 1 for the x^2 term, so a = 1 and b = 3. There is no constant, so c = 0.

2. Factor the polynomial and rewrite the equation.

First, determine if $x^2 + 3x$ has any common factors.

Both terms have a factor of *x*; therefore,

 $x^{2} + 3x = (x \bullet x) + (x \bullet 3) = x(x + 3).$

The polynomial cannot be factored any further.

The factors of $x^2 + 3x$ are x and (x + 3).

The equation $x^2 + 3x = 0$ can be rewritten as x(x + 3) = 0.

3. Set each factor equal to 0 and solve for *x*.

Once the polynomial has been factored, set each factor equal to 0 and then solve for *x*.

 $x = 0 \qquad \qquad x + 3 = 0$

x = -3

The solutions to the equation $x^2 + 3x = 0$ are x = 0 and x = -3.

A-SSE.3*, A-CED.1*, A-REI.4

4.	Check the solutions by substituting them into the original equation.		
	Check that a solution is correct by substituting it back into the original equation and solving the equation to ensure that it results in a true statement.		
	Check $x = 0$:		
	$x^2 + 3x = 0$	Original equation	
	$(0)^2 + 3(0) = 0$	Substitute 0 for <i>x</i> .	
	0 + 0 = 0	Evaluate the power and multiply.	
	0 = 0	Add.	
Because $x = 0$ makes the equation true, it is a solution to the e Check $x = -3$:		true, it is a solution to the equation.	
	$x^2 + 3x = 0$	Original equation	
$(-3)^2 + 3(-3) = 0$ Substitute -3 for <i>x</i> .		Substitute –3 for <i>x</i> .	
	9 + (-9) = 0	Evaluate the power and multiply.	
	0 = 0	Add.	
	Because $x = -3$ makes the equation true, it is also a solution. The solutions to the equation $x^2 + 3x = 0$ are $x = 0$ and $x = -3$.		

A–SSE.3*, A–CED.1*, A–REI.4

Instruction

Example 2

Solve $4x^2 - 26x = 14$ for *x*.

1. Write the equation in standard form, $ax^2 + bx + c = 0$, and determine values for *a*, *b*, and *c*.

The right side of the equation must equal 0. To get 0 on the right side, subtract 14 from both sides: $4x^2 - 26x - 14 = 0$.

The equation is now in standard form because the polynomial on the left, $4x^2 - 26x - 14$, is set equal to 0.

For $4x^2 - 26x - 14 = 0$, a = 4, b = -26, and c = -14.

2. Factor the polynomial and rewrite the equation.

First, determine if $4x^2 - 26x - 14$ has any common factors.

All three terms have a factor of 2; therefore, $4x^2 - 26x - 14 = 2 \cdot 2x^2 - 2 \cdot 13x - 2 \cdot 7 = 2(2x^2 - 13x - 7).$

Next, factor the trinomial $2x^2 - 13x - 7$.

The product of 2 (the coefficient of the second-degree term) and -7 (the constant) is -14. Find the factors of -14 that add up to -13, the coefficient of the first-degree term.

-14 and 1 are factors of -14 that have a sum of -13.

Rewrite -13x as -14x + 1x:

 $2x^2 - 13x - 7 = 2x^2 - 14x + 1x - 7$

Factor $2x^2 - 14x + 1x - 7$ by grouping.

$2x^2 - 14x + 1x - 7$	Expression	
$= (2x^2 - 14x) + (x - 7)$	Group $2x^2$ and $-14x$ because they have a common factor of $2x$.	
= 2x(x-7) + (x-7)	Factor out $2x$ from $2x^2 - 14x$.	
=(2x+1)(x-7)	Use the Distributive Property to rewrite the expression as two factors.	
The factors of $4x^2 - 26x - 14$ are 2, $(2x + 1)$, and $(x - 7)$.		
The equation $4r^2 = 26r = 14 - 0$ can be rewritten as $2(2r + 1)(r = 7) - 12r = 127$		

The equation $4x^2 - 26x - 14 = 0$ can be rewritten as 2(2x + 1)(x - 7) = 0.

A-SSE.3* A-CED.1*, A-REI.4

Instruction

3. Set each factor equal to 0 and solve for *x*. Once the polynomial has been factored, set each factor equal to 0.

The factor 2 is a constant and can be disregarded because 2 cannot equal 0. Furthermore, if both sides of the equation were divided by 2, the 2 would disappear since 0 divided by 2 is 0.

Only the factors that contain a variable can be set equal to 0 and solved. Set both of these factors equal to 0 and solve:

$$2x + 1 = 0$$
 $x - 7 = 0$
 $2x = -1$ $x = 7$

$$x = -\frac{1}{2}$$

The solutions to the equation $4x^2 - 26x = 14$ are $x = -\frac{1}{2}$ and $x = 7$.

4. Check the solutions by substituting them into the original equation.

Check that a solution is correct by substituting it back into the original equation and solving the equation to ensure that it results in a true statement.

2

Check
$$x = -\frac{1}{2}$$
:
 $4x^2 - 26x = 14$ Original equation
 $4\left(-\frac{1}{2}\right)^2 - 26\left(-\frac{1}{2}\right) = 14$ Substitute $-\frac{1}{2}$ for x.
 $4\left(\frac{1}{4}\right) - 26\left(-\frac{1}{2}\right) = 14$ Evaluate the power.
 $1 + 13 = 14$ Multiply.
 $14 = 14$ Add.
Because $x = -\frac{1}{2}$ makes the equation true, it is a solution to the equation.
(continued)

A–SSE.3*, A–CED.1*, A–REI.4

Instruction

Check <i>x</i> = 7:		
$4x^2 - 26x = 14$	Original equation	
$4(7)^2 - 26(7) = 14$	Substitute 7 for <i>x</i> .	
4(49) - 26(7) = 14	Evaluate the power.	
196 - 182 = 14	Multiply.	
14 = 14	Subtract.	
Because $x = 7$ makes the equation true, it is also a solution.		
The solutions to the equation $4x^2 - 26x = 14$ are $x = -\frac{1}{2}$ and $x = 7$.		

Example 3

The area of the Baker family's rectangular driveway is 324 square feet. The length is 3 feet larger than twice the width. What are the length and width of the driveway?

1. Write expressions that represent the length and width of the driveway.

Let *x* represent the width of the driveway.

The length is 3 feet larger than twice the width. Thus, the length must equal 2x + 3.

x represents the width of the driveway and 2x + 3 represents the length.

2. Write an equation for the area of the driveway.

Use the fact that the area of a rectangle equals the length times the width to write an equation.

A = lw	Formula for the area of a rectangle
	Substitute 224 for the grap $(2r + 2)$

(324) = (2x + 3)(x)

Substitute 324 for the area, (2x + 3) for the length, and *x* for the width.

The equation representing the area of the driveway is 324 = (2x + 3)(x).

A–SSE.3*, A–CED.1*, A–REI.4

Instruction

3. Write the equation in standard form, $ax^2 + bx + c = 0$.

Rearrange the equation so that the polynomial is in standard form, set equal to 0.

324 = (2x + 3)(x)	Original equation
(2x+3)(x) = 324	Apply the Symmetric Property of Equality to switch the left and right sides.
$2x^2 + 3x = 324$	Distribute the <i>x</i> .
$2x^2 + 3x - 324 = 0$	Subtract 324 from both sides.
The equation $2w^2 + 2w$	224 - 0 is now in standard form and is ready

The equation $2x^2 + 3x - 324 = 0$ is now in standard form and is ready to be factored.

4. Factor the polynomial and rewrite the equation.

First, determine if $2x^2 + 3x - 324$ has any common factors.

There are no factors that are common to all three terms.

Next, factor the trinomial $2x^2 + 3x - 324$.

The product of 2 (the coefficient of the second-degree term) and -324 (the constant) is -648. Find the factors of -648 that add up to 3, the coefficient of the first-degree term.

27 and -24 are factors of -648 that have a sum of 3.

Rewrite 3x as 27x - 24x:

 $2x^2 + 3x - 324 = 2x^2 + 27x - 24x - 324$

Factor $2x^2 + 27x - 24x - 324$ by grouping. Note that $2x^2$ and -24x have a common factor of 2x, and 27x and -324 have a common factor of 27.

$2x^2 + 27x - 24x - 324$	Expression	
$= (2x^2 - 24x) + (27x - 324)$	Group according to common factors.	
= 2x(x - 12) + 27(x - 12)	Factor out $2x$ from $2x^2 - 24x$ and 27 from $27x - 324$.	
=(2x+27)(x-12)	Use the Distributive Property to rewrite the expression as two factors.	
The factors of $2x^2 + 3x - 324$ are $(2x + 27)$ and $(x - 12)$.		

The equation $2x^2 + 3x - 324 = 0$ can be rewritten as (2x + 27)(x - 12) = 0.

A-SSE.3*, A-CED.1*, A-REI.4

- 6. Determine which solution for *x* makes sense for the situation. Since *x* represents the width of the driveway, *x* must be positive (the width of the driveway cannot be negative). Thus, $x = -\frac{27}{2}$ does not make sense as a solution, so it can be disregarded. Therefore, *x* = 12 is the only solution to the equation given the context of the scenario.
- 7. Find the length and the width of the driveway.

Since *x* represents the width of the driveway and x = 12, the width of the driveway is 12 feet.

Since 2x + 3 represents the length of the driveway, substitute 12 for x and solve to find the length:

	0	
2x + 3		Length of the driveway
= 2(12	2) + 3	Substitute 12 for <i>x</i> .
= 24 -	+ 3	Multiply.
= 27		Add.
The length of the driveway is 27 feet.		
The driveway is 27 feet long and 12 feet wide.		