UNIT 5 • POLYNOMIIAL OPERATIONS AND QUADRATIC FUNCTIONS A-APR.3, A-SSE.1* Lesson 5.7: Creating and Graphing Equations Using Standard Form

Practice 5.7: Creating and Graphing Equations Using Standard Form

Sketch the graph for each of the following quadratic functions.

1. $q(x)=-x^{2}-6 x-8$
2. $f(x)=-3 x^{2}+24 x-48$
3. $m(b)=b^{2}-6 b+10$

Find the y-intercept and vertex of the following functions. State whether the vertex is a minimum or maximum point on the graph and explain your reasoning.
4. $k(h)=h^{2}-4 h+3$
5. $l(d)=d^{2}-6 d$
6. $f(x)=-7 x^{2}-14 x-6$

Does the following graph represent the given function? Explain your reasoning.
7. $y(x)=x^{2}+12 x-28$

UNIT 5 • POLYNOMIAL OPERATIONS AND QUADRATIC FUNCTIONS A-APR.3, A-SSE.1* Lesson 5.7: Creating and Graphing Equations Using Standard Form

Use your knowledge of quadratic functions to complete the problems that follow.
8. Create the equation of a quadratic function with a vertex of $(-3,7)$ and a y-intercept of -2 .
9. The path of an arrow shot in the air can be modeled by the function $h(t)=-16 t^{2}+144 t+4$, where h is the height, in feet, of the arrow above ground t seconds after it is released. Determine the maximum height that the arrow reaches.
10. The demand, d, for plastic storage containers depends on their price. A retail manager determines that the number of containers she can sell at a price of x dollars each is given by the formula $d(x)=-3 x^{2}+220 x-200$. At what price will the demand for the containers be at a maximum?

