UNIT 5 • POLYNOMIIAL OPERATIONS AND QUADRATIC FUNCTIONS A-SSE.3^, A-CED.2*

Lesson 5.8: Creating and Graphing Equations Using the x-intercepts

Practice 5.8: Creating and Graphing Equations Using the x-intercepts

Identify the x-intercepts, if any, of the following quadratic functions. Determine the equation of the axis of symmetry for each parabola.

1. $y=(x-3)(x+6)$
2. $f(x)=\left(x-\frac{2}{3}\right)\left(x+\frac{2}{3}\right)$

Determine the equation of each quadratic function in standard form, given the zeros and a point on the graph.
3. $x=-2 ;(3,10)$
4. $x=5, x=-12 ;(0,-60)$

Sketch a graph for each of the following quadratic functions.
5. $y=(x+3)(x+1)$
6. $y=(3 x-2)(x-1)$

Given the graph of a quadratic function, use the intercepts and another point on the graph to write the equation of the function in standard form.
7.

UNIT 5 • POLYNOMIIAL OPERATIONS AND QUADRATIC FUNCTIONS A-SSE.3^, A-CED.2* Lesson 5.8: Creating and Graphing Equations Using the x-intercepts

8.

Use the given information to solve the following problems.
9. A family portrait hanging on the wall has a frame with dimensions of 11 inches by 9 inches. The width of the frame is represented by x. What are the dimensions of the portrait if its area is 35 square inches?

10. A bird takes off from the roof of a 250 -foot-tall building and flies to the ground below. Its path takes the form of a parabola. The bird's height can be modeled by $h(t)=-t^{2}+15 t+250$, where $h(t)$ is the height of the bird above ground in feet t seconds after leaving the roof. After how many seconds does the bird land on the ground?

