How do you determine if a set of data represents an exponential function?

For example:

x	$f(x)$
-1	0.667
0	1
1	1.5
2	2.25
3	3.375

$$
f(x)=1.5 x
$$

In this lesson you will learn how to write and graph an exponential function by examining a table that displays an exponential relationship.

1st Difference

1st difference is a constant of -2 .

Exponential Functions

$$
\begin{gathered}
f(x)=a b^{x} \\
a=\text { initial amount/start value }(a>0) \\
b=\text { common ratio }(b>0, b \neq 1)
\end{gathered}
$$

A Common Misunderstanding

Exponential Functions

$$
\begin{aligned}
f(x) & =2^{x} \\
f(x) & =3^{x} \\
f(x) & =4^{x} \\
f(x) & =5^{x} \\
f(x) & =0.5^{x+1}
\end{aligned}
$$

Core Lesson

Identifying an Exponential Relationship From a Table

Core Lesson
Writing an Exponential Equation

x	$f(x)$	
-1	$\frac{2}{3}$	
0	2	
1	6	
183		
2	18	
3	54	

$$
\begin{aligned}
& f(x)=a b^{x} \\
& a=2 \\
& b=3 \\
& f(x)=2(3) x
\end{aligned}
$$

Core Lesson

Graphing Exponential Functions

$$
f(x)=2(3) x
$$

x	$f(x)$
-1	$\frac{2}{3}$
0	2
1	6
2	18
3	54

Asymptote at $y=0$

In this lesson you have learned how to write and graph an exponential function by examining a table that displays an exponential relationship.

