How do you determine if a set of data represents an exponential function?

For example:

 $f(x) = 1.5^{x}$

In this lesson you will learn how to write and graph an exponential function by examining a table that displays an exponential relationship.

1st Difference

1st difference is a constant of -2.

Exponential Functions

 $f(x) = ab^x$

a = initial amount/start value (a > 0)

$b = common ratio (b > 0, b \neq 1)$

A Common Misunderstanding

Exponential Functions

 $f(x) = 2^{x}$ $f(x) = 3^{x}$ $f(x) = 4^{x}$ $f(x) = 5^{x}$ $f(x) = 0.5^{x+1}$

Core Lesson

Identifying an Exponential Relationship From a Table

54

X

-1

2

3

Writing an Exponential Equation $f(x) = ab^x$ f(x)<u>2</u> 3 a = 2 xЗ b = 3x3 xЗ $f(x) = 2(3)^{x}$ xЗ

Core Lesson

Graphing Exponential Functions

$f(x) = 2(3)^{x}$

In this lesson you have learned how to write and graph an exponential function by examining a table that displays an exponential relationship.

