UNIT 2 LESSON 1 - GRAPHING LINEAR FUNCTIONS

*The pairs of values (x, y) are called ordered pairs, and the set of all ordered pairs that satisfy an equation is called the solution set.
*When we plot these points, they usually form a curve. A curve is a graphical representation of the solution set for an equation. A linear equation forms a straight line.
*A linear equation can also be written in slope-intercept form, $y=m x+b$ Where " m " is the slope of the line and " b " is the y-intercept.
*It is important to understand that the solution set for most equations is infinite; therefore, it is impossible to plot every point when graphing.

EX\#1) Graph the solution set for the linear equation $-3 x+y=-2$.
Step \#1) Solve for y
$-3 x+y=-2$
$y=3 x-2$

Step \#2) Make a table of values (Plug values for x into the equation to solve for y)

X	\mathbf{Y}
0	-2
1	1
2	4

Step \#3) Plot and connect the points on graph paper

EX\#2) YOU TRY!!! Graph the solution set for the exponential equation $y=3^{x}$.

Step \#1) Make a table of values (no need to solve for $y=$ equation is already solved for y)

\mathbf{X}	\mathbf{Y}
0	1
1	3
2	9

Step \#2) Plot and connect the points on graph paper

FINDING X \& Y INTERCEPTS AND THE SLOPE

The y-intercept is the value of y when $x=0$ OR the point where the line intersects the y-axis.

The \underline{x}-intercept is the value of x when $y=0 \underline{O R}$ the point where the line intersects the x-axis.

To find the slope of a linear function, pick two points on the line and substitute the coordinates of the points into the equation $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Where m is the slope, $\left(x_{1}, y_{1}\right)$ are the coordinates of one point, and $\left(x_{2}, y_{2}\right)$ are the coordinates of the other point.
If the equation of a line is in slope-intercept form, the slope is the _coefficient of x.

EX\#3) Given the function $f(x)=-\frac{1}{5} x+2$, use the slope and y -intercept to graph the function. Then, identify the x intercept of the function.
Slope $=-\frac{1}{5} x \quad y$-intercept $=(0,2)$
To find the x -intercept $=$ make $\mathrm{y}=0$ and solve for x .
$0=-\frac{1}{5} x+2$
$-2=-\frac{1}{5} x$
$x=10 \quad$ So the x-intercept is $(10,0)$

EX\#4) Given the function $f(x)=-\frac{4}{3} x+4$, solve for the x - and y-intercepts. Use the intercepts to graph the function.
To find the y-intercept $=$ make $\mathrm{x}=0$
y-intercept $=(0,4)$

To find the x -intercept $=$ make $\mathrm{y}=0$ and solve for x .
$0=-\frac{4}{3} x+4$
$-4=-\frac{4}{3} x$
$x=3 \quad$ So the x-intercept is $(3,0)$

EX\#5) YOU TRY!!! Given the function $f(x)=-\frac{3}{5} x+3$, identify the intercepts. Use the intercepts to graph the function.

