UNIT 2 LESSON 2

CONNECTING GRAPHS OF EQUATIONS AND LINEAR FUNCTIONS

Linear functions model many situations in everyday life where the rate of change is proportional.

THINGS YOU ALREADY KNOW...

Slope-intercept form: $y=m x+b$
Function: one x-value for every y-value
Slope: Also called RATE OF CHANGE OR RISE OVER RUN
Y-intercept: point where the graph crosses the y-axis; the "b" in the formula for slope-intercept form
The equation for the graph of a linear function can be determined by finding the slope and y-intercept.

If the y-intercept is unknown, the equation of a line can be found either by using one point and the slope, or by using two points.

To find the equation of a linear function using a point and the slope, substitute the point and slope into the Slope intercept form $y=m x+b$ and solve for b.

To find the equation from two points, use the points to find the slope. Then substitute into the sope-intercept form.

EX\#1) The graph of a linear function is shown. Use two points on the line to find its slope. Write the equation for this line using the slope-intercept form. Determine the y-intercept, b.

Points $(2,3)$ and $(5,4)$

1) Find the slope $=\frac{4-3}{5-2}=\frac{1}{3}$
2) Use one of the given points and the slope to find b.

Use point $(2,3)$ and the slope $m=\frac{1}{3}$
$Y=m x+b$
$3=\frac{1}{3}(2)+b$
$3=\frac{2}{3}+b$
$\mathrm{b}=\frac{7}{3}$

3) Write the equation in slope-intercept form $y=m x+b \longrightarrow y=\frac{1}{3} x+\frac{7}{3}$

EX\#2) YOU TRY!!! Write an equation in slope-intercept form of the line that passes through the points $(4,7)$ and $(5,1)$. Determine the y-intercept, b.

